
Montgomery, Vermont Flood Hazard Modeling & Project Identification

Jessica Louisos, PE, MS & Roy Schiff, PE, PhD Water Resource Engineer & Scientists - SLR Lauren Weston District Manager – Franklin County NRCD

March 18, 2024

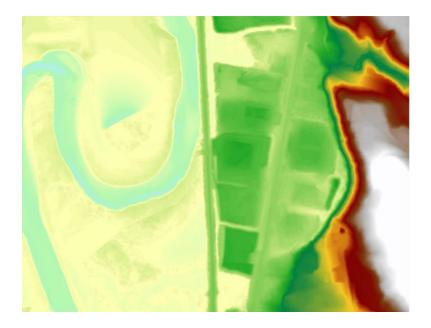


Flood Hazard Modeling & Project Identification

Understand Flood Issues and Patterns

- Aerial survey begins April 21
- Bridge surveys
- Hydraulic models

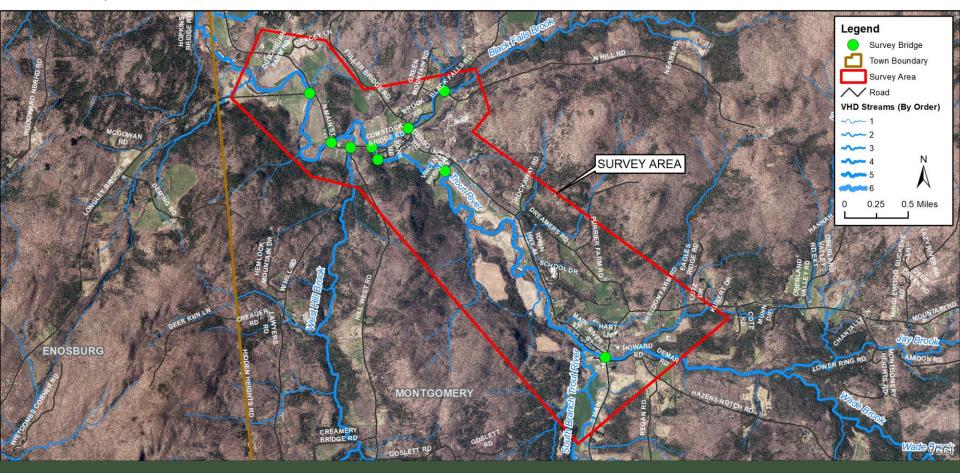
Identify Possible Mitigation Projects


- Visit sites
- Collect ideas from residents

Test Identified Alternatives

- Model possible projects in hydraulic model
- Consider constraints and project goals

Concept Design


Develop the top 5 projects to start the design process

Tasks & Schedule

										20	24 Aug Sep Oct Nov Dec Aug I I I I I I I I I I I I I I I I I I I												
	M	ar	A	pr	Μ	ay	Ju	ın	Ju	١L	Au	Jg	Se	эр	0	ct	Nov	/	Dec				
Task 1. – Data Collection & Project Initiation																							
1.1 Project Kickoff Meeting #1																							
1.2 Data Review																							
1.3 GIS basem ap																							
1.3 Site Visit, RAPID Geomorphic Assessment																							
1.4 Field Survey																							
Task 2. – Hydraulic Modeling																							
2.1 Hydraulic Model with LIDAR and Survey																							
2.2 Model Validation																							
2.3 Existing Conditions and Hydraulics Memo																							
2.4 Initial list of alternatives																							
2.5 Meeting #2																							
Task 3. – Alternatives Analysis																							
3.1 Explore Restoration and Flood Mitigation Alternatives																							
3.2 Flood Path and Velocity Mapping																							
3.3 Alternatives Matrix to Summarize Results																							
3.4 Meeting #3																							
3.5 Concept Design (30%)																							
Task 4. – Reporting & Presentations																							
4.1 Draft Report																							
4.2 Meeting #4																							
4.3 Final Report																							
4.4 Meeting #5																							

Project Area

Project Area - Flood Hazard Zones

Dog River Floodplain Restoration - Northfield

Removing buildings & people & infrastructure from most vulnerable locations

- Remove 10 damaged homes
- Remove 9,000 CY fill in floodplain & lower land average 4 feet
- Remove berm
- Plant restored 3-acre floodplain with native vegetation

Greenway Trail Bridge Replacement- Jeffersonville

Removed constriction

- An undersized bridge and unused abutments were removed
- Larger bridge installed
- Opened up floodplain under bridge

Melrose Terrace, Brattleboro – Overflow culvert at bridge

Melrose Terrace, Brattleboro - Floodplain

Removing buildings & people & infrastructure from most vulnerable locations

- Remove 11 buildings
- Relocate road
- Relocate sewer main / utilities

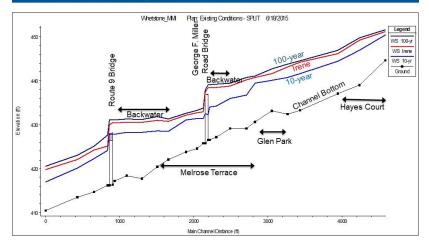
Increase floodplain storage capacity

- Remove 28,000 CY fill in floodplain & lower land average 5 feet
- Plant restored 4.4-acre floodplain with native vegetation

Flood Mitigation Analysis / Project Identification

Constrictions

- Bridges, culverts, or other structures that pinch the river
- Natural narrow spots
- Fill or buildings constraining the river


Fill or High Land

 Are there areas where the river could be given more space to hold flood waters

Areas with Prior Damage

- Where has repeated damages occurred?
- Road washouts
- Buildings flooded
- Ongoing erosion damage

Profile: Existing Conditions

We need your input, as you have lived through floods.

We know about some past damage/changes...

- Flooding in July 1997: Damage extended from upstream of Montgomery Center to downstream of Longley Bridge Road
 - NRCS has record of 10 federal contracts covering 26 projects paid out over \$501,610 in Montgomery (according to NRCS Emergency Watershed Protection Program Engineer Michel Lapointe). High water mark at 427.9 ft (NGVD29).
 - Several streambank projects along West Hill Brook and on the Trout River
 - Riprapping sections to protect Black Falls Road upstream of the covered bridge and downstream of the covered bridge
 - A project upstream of Vincent's Bridge Road on Trout River
 - A \$86,000 gabion project to protect Hill West Road
 - A riprap project on West Hill Brook to protect a residence
 - A round of Vermont Emergency Management Mitigation Buyouts.
- 2019 flooding: the Montgomery Town Clerk reported that Total costs included: \$216,017.62 for repairs of which FEMA contributed \$193,860.58 and Montgomery provided \$22,157.04 in match. Included rebuilding of the Recreation Field.
- Longley Bridge project

But we really want to hear from you!

Experiences with past flooding (where/when?)

Ideas that might help improve flooding or water quality?

Want us to check out your property?

Any questions or concerns?

Anything else we should know or people we should talk to?